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Abstract

Recently some fast methods (LAESA and TLAESA) have been proposed to find nearest neighbours in metric spaces. The
average number of distances computed by these algorithms does not depend on the number of prototypes and they show
linear space complexity. These results where obtained through vast experimentation using only artificial data. In this paper,
we corroborate this behaviour when applied to handwritten character recognition tasks. Moreover, we compare LAESA and
TLAESA with some classical algorithms also working in metric spaces. © 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

Given a set of prototypes whose classification is
known, the nearest neighbour technique classifies a
test sample in the class containing the prototype
whose distance to the test sample is minimum. There
are many problems of practical interest in which the
distance computation is too expensive, making the
brute-force approach impractical: isolated word
recognition through dynamic time warping (DTW)
(Rabiner and Levinson, 1984), attributed graph match
searching (Shapiro and Haralik, 1985), or best-match
string edit searching (Wagner and Fischer, 1974).

In this paper, the behaviour of the LAESA (Mico
et a., 1994) and TLAESA (Mico et al., 1996) algo-
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rithms is studied in a real life task. In particular,
these algorithms have been applied to the recognition
of handwritten digits using strings of symbols ob-
tained from the contour of characters. This technique
provides good classification results in relation to the
simplicity of the feature extraction method (Gomez
et al., 1995). On the other hand, the high computa-
tional cost of the edit distance makes in principle
LAESA and TLAESA specially adequate due to their
low number of distance computations.

In this work, both agorithms will be compared
with other classical algorithms that can be used in
the same context (in the sense that they only make
use of the triangle inequality property of the dis-
tance).

The algorithms used for comparison are:

- the Fukunaga and Narendra agorithm (1975)

(FUKNA),

- the Kaantari and McDonald algorithm (1983)

(KALND).
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Both agorithms have characteristics which are
similar to those of the LAESA and TLAESA methods:
(1) space complexity linear, (2) they only make use
of the triangle inequality property of the distance for
searching and (3) they work in sublinear time (as the
TLAESA dgorithm). There are no other methods in
the literature with these characteristics.

We apply them to the NIST Special Database 3.
This database consists of 128 X 128 bitmap images
of handwritten digits and letters. Digits written by
100 different writers were used in the experiments.

2. Feature extraction

Each digit is coded as an octa string, the string
representing the contour of the image. The procedure
scans the bitmap let-to-right and starting from the
top. When the first pixel on is found, it follows the
border of the character until it returns to the first
pixel. During this traversal, the algorithm builds a
string with the absolute direction of the next pixel in
the border (see Fig. 1.

In order to reduce the length of the strings, the
bitmap image has been previously compressed to a
64 X 64 one.

3. The edit distance

The edit distance between two strings x and vy is
defined as the minimum-cost set of transformations
that must be done to turn a string into the other. The
alowed transformations are insertions, deletions and
substitutions of a single symbol in the string. This
distance can be also defined recursively as follows:

d(A,1) =0,
d(A,yb) = d(A,y) + W,
d( xa,A) =d( x,A) + W,
d( x,yb) + W,
d( xa,yb) = min{ d( xa,y) + W,
d(x,y) +W(a,b),

where a,be 3, x,ye ¥ *, A is the empty string,
W,, W, are, respectively, the cost of making a dele-
tion and the cost of making an insertion, and W(a,b)
is the cost of substituting (mistaking) the direction a
for b. The substitution costs are proportional to the
relative angle between the directions (see Fig. 2)
where, in particular, W(a,a) = 0. This distance can
be computed by a dynamic programming algorithm
in O(|x|lyD time (Wagner and Fischer, 1974). The

Primitives
7 0 1
6 -——— —_— 2
5 3

"2"=222222432444446665656543222222246
6666666660000212121210076666546600210

Fig. 1. Example of chain-coding extraction.
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Fig. 2. Insertion, deletion and substitution costs.

edit distance was normalized dividing d(x,y) by the
sum of the lengths of the two strings, | x| + | yl.

4. The algorithms

All the fast algorithms used to find nearest neigh-
bours consist of two parts: the preprocessing and the
search. During the preprocessing, the agorithms
build some structures that speed up the search part.
During the search part, the nearest prototype is
searched but the triangle inequality is used in order
to avoid the calculation of some distances. This is
done by discarding those that cannot be closer to the
sample than a current one (elimination criterion).

A technique often used to reduce the number of
distances involved in real applications is to alow
some ‘‘looseness’’ in the triangle inequality (Vidal
et a., 1988).

Given a representation space E, the looseness is
defined for each X,y,z€ E as
h(x,y,z) =d(x,y) +d(y,z) —d(x,2).

If a histogram of values h(x,y, z) is computed for
agreat number of triplets (X, Y, z), this histogram can
be used as an estimator of the probability that the
triangle inequality is satisfied with a given loose-
ness. Therefore, a value H can be chosen such that
the probability of a looseness smaller than H is
negligible (Vidal et al., 1985).

This technique was used in the search part in
order to reduce the number of distance computations.
The value of the parameter H can be chosen in such
away that the error rate in the classification does not

increase or has at most a negligible increase. The use
of an adequate value of this parameter results in a
drastic reduction of the distance computations. The
optimum value of H can be calculated using the
method proposed in (Vidal, 1985) or can be obtained
experimentally as described below.

The introduction of the looseness makes some
changes in the algorithms necessary. In particular, in
the algorithm a prototype (or set of prototypes) is
eliminated if its lower bound distance to the sample
is larger than the current minimum distance D,,,,.
However, with the use of the looseness, a prototype
(or set of prototypes) is eliminated if its lower bound
distance to the sample is larger than D, — H.

5. Fitting parameters

A first set of experiments was made in order to
study the dependence of the error rate with the
looseness parameter. In these experiments, 10 writ-
ers were used for training and 10 writers as test
(each subset contained about 1000 prototypes). As
the LAESA and TLAESA agorithms use an addi-
tional parameter, the number of base prototypes (pro-
totypes used in the calculation of the lower bound
distance), in principle only the FUKNA and the
KALMD algorithms were used. The results are shown
in Figs. 3 and 4.

800 - FUKNA —o— 4
KALMD -+~
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Fig. 3. Average number of distance computations as a function of
the looseness for FUKNA and KALMD algorithms using a set of
8000 prototypes. The standard deviation for all estimations was
below 4%.
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Fig. 4. Error rate as a function of the looseness for FUKNA and
KALMD algorithms using a set of 8000 prototypes. The standard
deviation for all estimations was below 4%.

It was observed that for values of the looseness
lower than 0.1 the increase in the error rate is
negligible while there is a significant fal in the
number of distance computations. However, beyond
this point the error rate increases dramatically. We
will call this point critical looseness.

In order to obtain a suitable value of base proto-
types for LAESA and TLAESA a second set of
experiments was performed to show the dependency
of the number of distance computations with the
number of base prototypes (Fig. 5). These experi-
ments were made using 80 writers as training set and
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Fig. 5. Average number of distance computations for LAESA and
TLAESA algorithms varying the number of base prototypes, for a
set of 8000 prototypes on average.
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Fig. 6. Average number of distance computations as a function of
the looseness for LAESA, TLAESA, FUKNA and KALMD algo-
rithms using a set of 8000 prototypes. The number of base
prototypes used in LAESA and TLAESA algorithms was 40 and
80, respectively. The standard deviation for all estimations was
below 4%.

10 writers as test set. The selected |ooseness was the
critical (H = 0.1) for the FUKNA algorithm.

Fig. 5 shows that the minimum number of dis-
tance computations is obtained using about 40 base
prototypes for the LAESA and 80 base prototypes for
the TLAESA. The experiments in (Mico, 1996)
showed that this optimal value does not depend on
the number of prototypes.
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Fig. 7. Error rate as a function of the looseness for LAESA,
TLAESA, FUKNA and KALMD agorithms using a set of 8000
prototypes. The number of base prototypes used in LAESA and
TLAESA agorithms was 40 and 80, respectively. The standard
deviation for all estimations was below 4%.
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If the first set of experiments is repeated for the
LAESA and TLAESA algorithms with this number of
base prototypes, one finds the same critical looseness
as in the FUKNA and KALNMD experiment in Fig. 4
(see Figs. 6 and 7).

The parameters obtained in this section are also
used for al the experiments appearing in next sec-
tion, i.e., the looseness for al algorithmsis 0.1, and
the number of base prototypes for LAESA and
TLAESA is 40 and 80, respectively.

6. Results

In order to compare the behaviour on this task of
the four algorithms, a set of experiments was carried
out increasing the size of the training set. In Figs. 8
and 9, the average number of distance computations
and the consuming time for FUKNA, KALMD, TLAESA
and LAESA are compared. It is observed the large
difference in the number of distance computations
between FUKNA and KALMD compared to TLAESA
and LAESA. It is aso observed that the number of
distance computations for the LAESA and TLAESA
algorithms grows very slowly with the size of the
training set. The same slow increase is observed for
the time consumed.

In (Mico, 1996) the LAESA and TLAESA ago-
rithms were compared. There, it was shown that the
time needed is linear for the LAESA and sublinear
for the TLAESA as a function of the number of
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Fig. 8. Average number of distance computations for FUKNA,
KALMD, TLAESA and LAESA as a function of the number of
prototypes.
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Fig. 9. Time needed (in seconds) for FUKNA, KALMD, TLAESA
and LAESA as a function of the number of prototypes.

prototypes. However, the LAESA was faster than
TLAESA for not very large sets of prototypes or for
expensive distance measures. Indeed, the distance
that we are using is very expensive, and the TLAESA
tends to be slower than LAESA, as shown in Figs. 8
and 9.
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Fig. 10. Classification error rate for BRUTE- FORCE, FUKNA,
KALMD, TLAESA and LAESA as a function of the number of
prototypes. The error bars correspond to a 95% of confidence
level.
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A final experiment was made in order to study the
error rates when the number of prototypes increases
for the four algorithms. The same experiment was
repeated using a brute-force agorithm to find the
exact nearest neighbour (i.e., H = 0), as seen in Fig.
10. As expected, the behaviour of the four ago-
rithms is similar to the behaviour of the brute-force
algorithm.

7. Conclusions

In this paper we have applied four fast nearest
neighbour search algorithms to a handwritten charac-
ter recognition task in order to compare their be-
haviour. The selected algorithms were KALMD
(Kalantari and McDonald, 1983), FUKNA (Fukunaga
and Narendra, 1975), LAESA (Mico et al., 1994) and
TLAESA (Mico et al., 1996) The LAESA and
TLAESA are algorithms that, with artificial data,
showed an excellent performance (the average num-
ber of distance computations grows very slowly as
the size of the training set increases).

In all the experiments the looseness technique was
used in order to reduce the number of distance
computations.

The experiments show that LAESA and TLAESA
have the same properties observed with artificia
data. These agorithms are significantly faster than
KALNMD and FUKNA.
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